Scientists say ‘growing’ medicines in plants requires new regulations

Published: 19-Feb-2013

Regulations need to be sensibly applied to allow pharmaceuticals to be produced in plants

Amending the EU directive on genetically modified organisms (GMOs) could help stimulate innovation in making vaccines, cheaper pharmaceuticals and organic plastics using plants, scientists argue.

Six researchers from the US and Europe, including Dr Penny Sparrow from the John Innes Centre in Norwich, UK, have compared risk assessment and regulation between the two continents in a paper published in Current Pharmaceutical Design.

Sense About Science will run a live Q&A on the subject from 12–1pm on Wednesday 20 February.

In the EU, plant-made pharmaceuticals have to be authorised in the same way as GM agricultural crops. In theory, any farmer in the EU once approved can grow agricultural crops. But for crops producing pharmaceuticals this would never actually happen. Drug companies would likely license farmers to grow these crops under controlled, defined and confined conditions.

‘We need tight regulations enforced by continuous oversight to encourage investment, while maintaining trust,’ said Dr Sparrow.

‘This will be of high importance, especially in Europe, where the issues surrounding the cultivation of GM agricultural crops remain a contentious concern.’

Plant-made pharmaceuticals challenge two sets of existing EU regulations

‘Plant-made pharmaceuticals challenge two sets of existing EU regulations and to make progress in this area we need to make sure they are applied sensibly to allow pharmaceuticals to be produced in plants.’

The advantages of using plants to produce therapeutic proteins include the ability to produce large quantities quickly and cheaply, the absence of human pathogens, the stability of the proteins and the ease with which raw material can be stored as seed. This could be of huge benefit in developing countries where problems with storage can render vaccines useless.

If seed could be transported to local production and extraction facilities, the technology, also known as ‘plant molecular farming’ could also help boost local economies.

Just one farm growing 16,000 acres of safflower could meet the world’s total demand for insulin. But potential cost savings are eliminated under current regulations, set up for GM agricultural crops not pharmaceuticals.

The average cost for having GMOs approved in Europe is estimated at €7–€10m per event, compared with US$1–$2m in the US. This helps keep Europe behind in exploiting the potential of these technologies, the scientists say.

‘Openness and transparency are needed to develop new regulations that work for the public and for investors,’ said Dr Sparrow.

‘Regulations need to be harmonised across the world, in order to keep advances and competition on a level playing field.’

Openness and transparency are needed to develop new regulations that work for the public and investors

The scientists propose amendments to EU Directive 2001/18 to allow pharmaceutical products from GM plants to be commercialised without needing authorisation to enter the human food or animal feed chain. Instead, the scientists say they should be grown under clearly defined and enforced conditions to keep the food and animal feed chain ‘contamination free’.

As each GM plant moves from the laboratory to scaled-up production in a greenhouse or field, additional oversight is needed to consider issues with environmental release and the ultimate use by humans. Measures can include those adopted in the US, such as limited acreage, confinement, fallow zones and only supplying seed to farmers specifically contracted to grow PMPs.

Dr Sparrow collaborated with EU partners to test the challenges faced by potential investors. They chose the first plant-derived anti-HIV monoclonal antibody to be tested in humans. It was isolated, purified and formulated as a topical saline solution. One result of the project was preparing a regulatory pathway that others could follow to take a product into clinical trials. Another was establishing good manufacturing practices for biologically active proteins expressed in transgenic plants.

You may also like