Medherant, a developer of next generation transdermal drug delivery patches, is using its world-leading expertise in bioadhesives and polymer chemistry to create new adhesive transdermal patches to expand and advance the library of drugs that can be delivered using patches. The TEPI Patch technology, developed by Medherant, improves upon existing patches by significantly increasing their drug loading capability, efficacy and the patient user experience.
The company is currently developing an ibuprofen transdermal patch, and has also had significant results testing their breakthrough TEPI Patch design with lidocaine. Dr Kevin Robinson caught up with CEO, Nigel Davis, to find out more.
If you know about patches, says Nigel, there have been a number of different varieties and designs during the past few years, starting with simple poultices and reservoir patches comprising a gel or a bag-like structure with a semi-permeable membrane containing a drug, and an adhesive component to hold it in place. These were generally quite cumbersome and difficult to manufacture, and uncomfortable to wear.
To improve on this, industry looked into developing a matrix-like system wherein the drug, or even the drug and the adhesive, were incorporated into a matrix-based patch. Currently, most patches, such as hormone and nicotine patches for example, follow this model. They work, they’re quite good … but there are limitations to what you can do with currently available adhesives, which is why patch-based delivery systems are not as ubiquitous as oral solid dosage (OSD) forms. You have to have an adhesive that’s capable of carrying an appropriate payload to deliver an adequate dose and achieve the required therapeutic effect through the skin.
If you can’t put a significant volume of drug into the patch, then you’re limited to high potency actives, and they have to be compatible with the adhesive that you’re using. And, of course, formulation issues have to be considered; it’s important that the drug doesn’t crystallise within the patch, leak out or diffuse into the backing material. The range of products that you can use with current adhesives is relatively small. Some formulations cause the adhesive to lose their stickiness, so they don’t remain in place, which affects both user compliance and efficacy.
So, we looked at this and realised that there must be a way of getting more products into patches. We looked at using micro-needles to make little holes, so that product could better penetrate the skin, or electroporation, using an electric current to transport the drug into the dermis. Both of these techniques are valid and in use, and are very appropriate for specific drugs. But, the real issue is that there have been no new adhesives for, perhaps, more than 20 years. Sure, there have been subtle variations on existing versions, but no new classes of adhesive.