Recent advances in optical preclinical imaging

Published: 14-Dec-2016

In this short article, we highlight recent advancements in optical preclinical imaging and assess the current state of the art in the field. In addition, and by referencing work done using the latest system from Bruker, we identify new potential for demonstrating and measuring biological processes in small animal models

You need to be a subscriber to read this article.
Click here to find out more.

In drug discovery and development, preclinical in vivo molecular imaging is considered to be an essential tool. It provides researchers with clear visibility of cellular changes at a molecular level. Imaging approaches such as optical positron emission tomography (PET) and single-photon emission computed tomography (SPECT) bring high specificity and wide applicability, enabling numerous molecular events to be monitored and key markers to be identified.

These techniques feed our understanding of disease progression, as well as revealing the mode of action and pharmacokinetics of potential therapeutics.

Considering small animal optical imaging systems in particular, combining multiple imaging modalities in a single instrument gives access to valuable information about physiological and disease mechanisms in the preclinical setting. For example, five imaging modalities, including bioluminescence, multispectral VIS-NIR fluorescence, direct radioisotopic imaging, Cerenkov radiation and high-speed digital X-ray, are provided as standard within the latest Bruker system (Xtreme II), supplying functional images that allow for the coregistration of molecular events with tissue or organ morphology.

Not yet a Subscriber?

This is a small extract of the full article which is available ONLY to premium content subscribers. Click below to get premium content on Manufacturing Chemist.

Subscribe now Already a subscriber? Sign in here.

You may also like