Fraunhofer Institute researchers grow plasma in bags
Scientists say cell culture bags could eventually replace Petri dishes
Doctors are increasingly using live cells in their treatments: in blood transfusions and bone marrow transplants, as well as in stem cell therapies and following severe burns. Cells taken from the patients themselves are ideal for replacing burned skin, eliminating immune deficiencies, repairing degenerated cartilage or to treat injured bones, as they are not rejected by the immune system. These cells have to be kept, cultivated, reproduced or even modified in a patient-specific manner.
The problem, however, lies in the storability of the cell solutions used. Because they can easily become infected, they can only be stored for a few days in the containers conventionally used today.
A joint project called InnoSurf aims to remedy this problem. Scientists from five research institutions, along with partners in the industry have come together to develop plastic surfaces and measuring methods for efficiently producing human cells for diagnostic and therapeutic applications. The Helmholz Centre for Infection Research (HZI) in Braunschweig, Germany co-ordinated the work.
The aim is to cultivate the cells in sealed, sterile plastic bags. The inner surface of the bags has to be modified so that they provide cells with good conditions for survival.
A team led by Dr Michael Thomas at the Fraunhofer Institute for Surface Engineering and Thin Films IST in Braunschweig, Germany, has now developed a plasma technology process for use at atmospheric pressure.
‘We fill the bags with a specific gas mixture and apply an electrical voltage,’ explained scientific assistant Dr Kristina Lachmann. ‘Inside them, for a brief period, plasma is created, i.e. a luminescent, ionised gas, which chemically alters the plastic surface.’ During this process the bag remains sterile as plasmas also have a disinfecting action.
Thomas said the advantage of the process is that it operates at atmospheric pressure and is therefore cost-effective, fast and flexible.
The new bags facilitate the sterile handling of cell cultures. Previously, researchers and clinicians had to use open Petri dishes, bottles or bioreactors. As these systems need to be opened, at least for filling, contamination can easily occur. By contrast, when using the new technology with its sealed bag system, the cells migrate directly into the bag via an injection needle or connected tube systems without coming into contact with their surroundings. The sterile interior of the bags contains nutrient medium and germ-free air or a suitable gas, which been added beforehand. Even during the cultivation period the containers do not have to be opened, and at the end the cells can be removed again by injection needle.
The researchers could also use the disposable systems for growing artificial organs. If the bags are provided with a three-dimensional structure, cells could attach themselves to it and create artificial skin, nerves, cartilage or bone, which could be used prosthetically in the patient.
So far, their cultivation has mainly failed because the stem cells have been reluctant to attach themselves to spatial structures. The IST says the plasma process that it has developed could solve this problem. In collaboration with the University of Tübingen, Braunschweig City Hospital plans to isolate certain stem cells from tissue samples and investigate onto which of the new plastic surfaces they could develop bone or cartilage.
You may also like
Trending Articles
You may also like
Manufacturing
The story of an East-West German company | 150 years of Romaco Kilian
Kilian’s story tells of the rise, fall and resurgence of a Berlin company steeped in tradition, which is now based in Cologne. It is the story of the entrepreneur Fritz Kilian, who turned a small locksmith’s workshop in Berlin into a successful company that is still a leading manufacturer of tablet presses today. It is the story of a visionary whose legacy has endured the test of time and continues to this day
Manufacturing
ystral expands India footprint with new Bangalore facility to support Asian markets
German mixing and process technology specialist ystral has opened a new facility in Bangalore, strengthening its Indian operations and laying the groundwork for a regional service hub supporting fast-growing Asian markets
Manufacturing
Why aseptic processing is critical for microsphere drug manufacturing
As microsphere-based drug delivery systems move from niche innovation to commercial reality, manufacturers face growing pressure to guarantee sterility without compromising product integrity. Aseptic processing has become essential to meeting both regulatory expectations and patient safety requirements